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BACKGROUND OF THE INVENTION

1. Field of the Invention.

This invention relates to the field of lighter-than-air structures. More specifically, the
invention comprises a rigid “balloon” having a layered shell comprised of specified materials and
dimensions. The selection of appropriate materials and dimensions allows the balloon to
simultaneously achieve sufficient compressive strength, buckling stability, and positive buoyancy.

2. Description of the Related Art.

The concept of using a rigid evacuated shell as a lifting device is several centuries old. Lift
is created by evacuating a weight of air which is greater than the weight of the structure of the shell
itself, thereby creating a “vacuum balloon.” Of course, the structure must be able to resist the
compressive forces exerted by the surrounding atmosphere. A simple analysis of these forces
illustrates why the concept of a vacuum balloon has not been realized in fact.

FIG. 1 shows a vacuum balloon 8 (sectioned in half'to illustrate its hollow nature). One-layer

shell 10 is a thin spherical structure of homogenous material. FIG. 2 shows a closer view ofthe wall
of one layer shell 10. The thickness of the shell material is designated as /2 .
Returning to FIG. 1, a simple stress analysis is discussed using one half of the shell. The

atmospheric pressure, P, exerts force uniformly across the surface area of a spherical shell. In the

view, the sphere has been sectioned in half in order to simplify the analysis.
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If R is the overall radius of the shell, and P, is the atmospheric pressure, then the total force

exerted upon the half of the shell by the atmospheric pressure is 77 - R*- P . The half of the shell

will be in static equilibrium if this force is balanced by the total compressive force in analyzed

section 11 (graphically depicted as the six smaller arrows in the view).

The approximate surface area for analyzed section 111is 2- 77+ R -/ (very nearly true for

a thin-walled sphere, as shown). The compressive stress in analyzed section 11 is therefore found

by the expression:

oc=(n-R*-P)/(2-7-R-h)

Of course, the ultimate goal is to obtain buoyancy. In order to obtain neutral buoyancy, the

mass of the shell must be no greater than the mass of the air it displaces. The volume of air

displaced is equal to 4 / 3- 77+ R>. The mass of the displaced air is therefore 4 /3 - 77 - R®- yo
where p_ is the density of the air.

The volume of the shell material is equal to 4 - 7 - R? - h. The mass of the shell material
is thenequalto 4-7-R* -h- P, , where p_ is the density of the shell material. Setting the mass

of the displaced air equal to the mass of the shell material gives the following expression:

4/3~7Z‘R3~,0a=4°7r°R2-h~ps (Equation 1)

Cancelling out factors found on both sides of the expression simplifies the equation to:

hiR=p,/(3p,)
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A form suitable for substitution back into the prior equation for ¢ is then stated as:

h=(p, -R)/ (3 p,)

Substituting in this expression gives the following solution for the simple stress in analyzed
section 11:

oc=3/2-(p,/p,) P,

This expression can be used to evaluate the compressive stress in an aluminum shell thin

enough to obtain neutral buoyancy. The density of aluminum ( p, ) is about 2700kg / m> . The
density of air at normal conditions ( o, ) is about 1.29kg / m’>. Atmospheric pressure is about

1.01-10° Pa . Thus, using the simple stress equation, the compressive stress in the thin aluminum
Y

shell is about 3.2-10% Pa. This value is of the same order of magnitude as the compressive

strength of good modern aluminum alloys.
However, those skilled in the art will realize that a simple evaluation of the compressive
stress in analyzed section 11 is insufficient to predict the resistance of the thin shell to compression

when evacuated. Thin shells typically fail by buckling (loss of stability). The critical buckling

pressure ( P, ) for a thin walled shell is determined using the following formula of the linear theory

of stability:

2-E-W 1

P ==
V3 (- R
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In this expression, £ stands for the modulus of elasticity and £ stands for Poisson’s ratio.
Substituting in the prior expression2 = (p, - R) / (3- p,) and solving for the ratio of (E / p,*)

gives the following expression:

2 9‘Pc,«'\,/ ‘(1‘,U2)

Elp =
2°pa2

If the expression is solved for atmospheric pressure ( P, = P, ), then one can determine if

a suitable material (with a sufficiently high modulus of elasticity and a sufficiently low density) is

available. Using a Poisson’s ratio of 0.3 (a representative value) allows for the solution of £/ p,” .

The solution is about 4.5-10° kg“1 m® s

This figure suggests that a phenomenally stiff and light material will be needed. If, as an

example, diamond is used as the shell material (modulus of elasticity of 1.2-10"* Pa and density

5

of 3500kg / m’ ), thentheratio £ / p,* willbeabout 1-10° kg™ -m° - 57 . Thus, evendiamond

isnot nearly strong enough to form a vacuum balloon using a homogenous wall structure. No known
material can be used to create a vacuum balloon made from a homogenous wall structure. A
different structural solution is therefore needed.

The abstract concept of a vacuum balloon has been presented in several prior U.S. patents.
As an example, U.S. Patent No. 3,288,398 presents a vacuum balloon formed from a homogenous

ceramic wall. The disclosure in the ‘398 patent presents no analysis of the proposed structure’s
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stability when enough air is evacuated to achieve buoyancy. In fact, as discussed in the preceding
section, a homogenous wall structure as disclosed in the ‘398 patent will fail long before positive
buoyancy is achieved.

U.S. Patent No. 1,390,745 to Armstrong discloses a composite wall structure with the
suggestion that the structure can be used in creating a buoyant and rigid balloon. However, upon
closer reading, the ‘745 disclosure has no information regarding how the proposed structure could
actually achieve positive buoyancy. In fact, the ‘745 disclosure states that the walls “may be made
as thick and strong as desired.” When the walls of the ‘745 design are in fact made as thick and
strong as they need to be to resist collapse when the interior is evacuated, the structure comes
nowhere close to positive buoyancy.

Accordingly, it is desirable to produce a composite structure in which the materials are
selected to have particular properties and in which the dimensions are optimized within a range in
order to achieve (1) positive buoyancy; and (2) sufficient buckling stability to maintain an acceptable

safety factor.

BRIEF SUMMARY OF THE INVENTION

The present invention comprises a new type of vacuum balloon. A layered wall structure is
used, including a relatively thick cellular section sandwiched between and bonded to two relatively
thin layers. Different materials are selected for the thick section versus the thin layers (In some
instances they may be made from the same materials, but processed in a different way). The layered

wall design is used to form a thin-walled sphere having greatly enhanced resistance to buckling.
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Using this approach it is possible to create a rigid vacuum balloon, having positive buoyancy, which
is also strong enough to withstand atmospheric pressure.

The invention comprises defining a critical range for the relative wall thicknesses. When the
defined parameters lie within this critical range, the overall structure is both stable and positively

buoyant.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

FIG. 1 is a perspective view, showing a portion of a vacuum balloon.

FIG. 2 is a detail view, showing a portion of the wall used in the vacuum balloon of FIG. 1.

FIG. 3 is an exploded view, showing the components used to form a wall in the present
invention. |

FIG. 4 is a perspective view, showing the components of FIG. 3 in an assembled state.

FIG. 4B is a plan view, showing a hexagonal cell.

FIG. 5 is a perspective view, showing one possible application for the vacuum balloons.

FIG. 6 is a perspective view, showing an alternate approach to constructing a vacuum
balloon.

FIG. 7 is a perspective view, showing an alternate wall construction.

FIG. 8 is a perspective view, showing the use of vents in the core layer.

FIG. 9 is a perspective view, showing an alternate embodiment using a porous foam as the
core layer.

FIG. 10 is a plan view, showing individual pores in the porous foam.
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FIG. 11 is a three-dimensional plot showing the relationship between the safety factor, the

!
shell mass to displaced air mass ratio, and /4, .

FIG. 12 is a three-dimensional plot showing the relationship between the safety factor, the

!
shell mass to displaced air mass ratio, and /; .

FIG. 13 is a three-dimensional plot showing the relation ship between the safety factor, the

!
shell mass to displaced air mass ratio, and /; .

FIG. 14 is a two-dimensional plot showing the relationship between safety factor and A, .

REFERENCE NUMERALS IN THE DRAWINGS

8 vacuum balloon 10 one-layer shell

11 analyzed section 12 layered shell

14 inner layer 16 core layer

18 outer layer 20 layered vacuum balloon
22 fuselage 24 payload compartment
26 air ship 28 balloon half

30 mating flange 32 alternate layered shell
34 reinforcing rib 36 hexagonal cell

38 vent 40 porous foam

42 foam pore
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DETAILED DESCRIPTION OF THE INVENTION

FIG. 3 shows a new type of wall section used in the present invention. Layered shell 12 is
formed in the shape of a thin-walled hollow sphere. FIG. 3 shows a small portion of the wall. Inner
layer 14 faces the sphere’s hollow interior. Outer layer 18 covers the outside of the sphere.
Sandwiched between inner layer 14 and outer layer 18 is core layer 16. These three layers are
bonded together using adhesives or other known processes. Those skilled in the art will know that
adhesives have been successfully used for many years in the creation of thin-walled honeycomb
structures.

Core layer 16 is made of a material having the following properties:

L. ‘low density;

2. relatively high compressive strength in the transverse (radial) direction;

3. relatively high out-of-plane shear strength;

4. relatively high compressive modulus of elasticity in the transverse (radial) direction;
and

5. relatively high out-of-plane shear modulus.

One suitable core layer material is aluminum alloy honeycomb. An example is PLASCORE
PAMG-XR1 1.0-3/8-0007-5056, available from Plascore, Inc., of 615 N. Fairview Street, Zeeland,
MI 49464. Other materials can also be used, so long as they have a “cellular” structure. The term
“cellular” as used herein means a heterogenous composition in which voids are encompassed by
surrounding walls. In order to achieve a high stiffness to weight ratio, the voids preferably comprise

the majority of the volume.
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The inner and outer layers should be made of a material which is different from that selected
for the core, since different material properties are needed (although a foam or a honeycomb matrix
made of the same material as the inner and outer layers may be used as the core). Three materials
were considered for inner layer 14 and outer layer 18. These were:

1. Brush Wellman 1220H beryllium alloy, available from Brush Wellman, Inc.,

Beryllium Products Division, 14710 W. Portage River S. Road, Elmore, OH 43416;

2. Ceradyne Ceralloy 546-3E boron carbide ceramic, available from Ceradyne, Inc.,

3169 Redhill Ave., Costa Mesa, CA 92626; and

3. Diamond-like carbon (“DLC”), with some typical properties.

FIG. 4 shows the three layers bonded together to form layered shell 12. The reader will
observe that the inner and outer layers have the same thickness, while the core layer has a
significantly greater thickness.

The shell section shown in FIGs. 3 and 4 appears to be flat, but this is only because such a
small portion is shown. In reality, the shell section is a portion of a spherical surface (meaning it is
curved in two planes). Inner layer 14 and outer layer 18 are straightforward spherical sections. The
embodiment shown in FIGs. 3 and 4 uses a honeycomb matrix for the core. Because the core
material must also wrap around a spherical surface, the nature of the honeycomb material comprising
core layer 16 is more complex than it would be if the matrix simply conformed to a flat surface.

The honeycomb is made from a plurality of adjoining cells, bounded by walls which join the
inner layer to the outer layer. Each of these walls must be approximately parallel to a radius

extending from the center of the sphere to the shell at the position of the particular wall. Thus, the
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honeycomb cells will curve in two planes as well. This fact holds true for all types of cells, whether
they are hexagonal or not (non-hexagonal cells will be discussed subsequently).

The cellular structure for the core layer can be made using a variety of techniques, and should
not be seen as limited to honeycomb cells. One possible substitute approach is described in detail
in U.S. Patent No. 5,273,806 to Lockshaw et.al. (1993). That patent, which is hereby incorporated
by reference, discloses a different approach to creating interlocking cells. However, as hexagonal
cells are most common, they have been illustrated in this disclosure.

Light honeycombs are usually made of thin metal foil and are relatively flexible. They may
be laid upon and bonded to curved surfaces. They have been used in curved structures for many
decades. For highly curved surfaces, modifications of the honeycomb are made (such as providing

a cell with curved walls).

Expressions can be developed to describe the stability of the layered structure. Let /1, = h,
equal the thickness of inner layer 14 and outer layer 18. Let /1, be the thickness of core layer 16.

Let p, be the density of the inner and outer layers, and let o, be the density of the core layer. The

equilibrium condition where the mass of the structure equals the mass of the air displaced (as

previously described in equation 1) can then be reformulated as follows:
4137 R -p, =47 R -(h-p+hy-p,+hp,)

The buckling stability condition was previously formulated by others for a three-layer dome

on a semi-empirical basis. The critical pressure is determined as follows:

h, - h,
R2

hy - (hy +hy)
2

P,=2.E
R

~2.E.
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In this expression E is the modulus of elasticity of the inner layer and the outer layer material

(assuming they are made of the same material). A different modulus of elasticity for the core

material will be designated as £ ,. The core material is typically anisotropic, meaning that its

mechanical properties will not be the same for all orientations (although it may be isotropic if a foam

is used as the core material). The modulus E_ is the modulus of elasticity in the transverse (radial)

direction.

An expression is known for the critical load of the local form of instability of a three-layer

plate. The expression determines the minimum stable value permissible for £ :

(min) 47;;'3 f E . - . .
FE = , where £'= —, 2T, is the critical load per unit width of a

©  NES 1- u

three-layer plate, O is the thickness of the inner layer and the outer layer, and £ is the Poisson’s

ratio for the material of the inner layer and the outer layer.
For the case of the relatively thin-walled hollow sphere, then, the following expression may

be written:

27R-2T, = 7R*- P, ,and 5= h, .

In order to obtain the minimum shell mass, £ _ should be set equal to Ec(min) . A value for

the minimum stable core thickness can then be determined as
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2/3

h'=| —=-=| ,(Equation2), where /; = h,/ R.

A finite element eigenvalue buckling analysis was performed to confirm and refine the
theoretical results. ~ The honeycomb core layer was modeled as recommended by Hexcel

Composites, a honeycomb manufacturer.  Specifically, Poisson’s ratio in all directions

(s thoss 1, ), “in-plane” moduli of elasticity ( £ _, Ey ), and “in-plane” shear modulus (G, N )of

the honeycombs are all zero or nearly zero (assuming that direction z is normal to the shell surface).
For a cell size of 3/8 inch and a foil thickness of 0.0007 inches, the figures provided by
www.plascore.com/5056_2.htm were as follows:

Nominal Density = 1.0 pounds per cubic foot
Bare Compression Strength = 35 psi

Bare Compression Modulus = 15,000 psi

Plate Shear Strength (“L” direction) = 60 psi
Plate Shear Strength (“W” direction) = 35 psi
Plate Shear Modulus (“L” direction) = 15,000 psi
Plate Shear Modulus (“W” direction) = 9,000 psi

These values were used to analyze the layered shell. However, the honeycombs were

assumed to be transversely 1sotropic, so the lesser values of shear strength and shear modulus were



14

chosen. It should be noted that the difference between the honeycomb plate shear modulus and the
bare shear modulus was shown by others to be about 10%.
The following relationship exists between the minimum eigenvalue obtained in the

eigenvalue buckling analysis and the critical pressure:

P
/Imin = =
P

a

!

The eigenvalue A_. canbe determined for arange of varying values of /2, . The minimum

min

!
eigenvalue, A has a rather sharp maximum for a value of /2; that is approximately half as large

‘min

as that obtained by the simplified method of Equation 2.

The expression of Equation 2 will not provide an appropriate answer for all altitudes. Those
skilled in the art will realize that a vacuum balloon can be optimized for a particular range of
altitudes and that - as an example - a vacuum balloon optimized for low altitudes will not provide
positive buoyancy at high altitudes. The low-altitude vacuum balloon must have relatively higher
strength, and a relatively thick and heavy wall. If this vacuum balloon is then transported to high
altitudes, its mass may be too great to achieve positive buoyancy (even with a very high internal

vacuum).

For such a high-altitude vacuum balloon, the optimal value of /4, may be significantly less

than the expression given in Equation 2 (as the value from Equation 2 may be too high for positive

buoyancy at high altitudes). It may then be determined from the following approximate condition:
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The mass of the core should be roughly equal to the combined mass of the face sheets. The reader
should bear in mind that these expressions provide approximate values. Whatever altitude range
a vacuum balloon is optimized for, the actual optimal dimensions for the face sheets and the core can

be determined using the finite element method.

the maximum value for the minimum eigenvalue exceeds 3.50 (This value was obtained for

’

’ !
h, ~2.77-107 and h ~104-107*, where i, =h, / R).  For boron carbide inner and outer

layers(p, = 2500kg / m’, E = 460GPa , 11 = 0.17), this maximum exceeds 3.06 (This value

was obtained for h; ~2.36-107 and hl, ~7.05-107°). For diamond-like carbon (“DLC”) inner

and outer layers ( o, = 3500kg / m’, E = 700GPa, 1= 0.2) this maximum exceeds 2.56

(This value was obtained for /2, ~198-107, i ~5.69-10). The reader should note that

the inner and outer layers may be made of different materials. As an example, the inner layer might
be DLC while the outer layer might be boron carbide.
Of course, it is desirable for the vacuum balloon to carry a useful load, rather than merely

achieving neutral buoyancy on its own. Thus, if the wall thicknesses are reduced by 30% (with the

resulting weight reduction representing an available payload), a new value for A_. must be

min

determined. The new figure for boron carbide inner and outer layers is 2.14, which is still

significantly more than 2.
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Those skilled in the art will therefore realize that existing materials can be used to make a
three-layer positively buoyant vacuum balloon which can withstand atmospheric pressure (including
a reasonable safety factor). Non-linear buckling analysis can be used to refine the analysis of the
critical pressures, taking into account expected manufacturing imperfections. The safety factor will
be eroded somewhat. However, precisely manufactured thin spherical shells were shown to
withstand external pressures of up to 80-90% of the theoretical critical pressure. The static stress
analysis also confirmed that the stress values within the inner layer, the core layer, and the outer layer
did not exceed the respective compressive strengths for the materials used.

Intracell buckling is another factor which should be considered in evaluating the stability of

the design. FIG. 4B shows hexagonal cell 36, which has a particular circumradius . If 7., T are

the critical loads per unit width of the face sheet in directions x and y, then the formula for the critical

intracell buckling load was previously developed by others as follows:

Eh’

T+ L1167, = 348782  where D= —T0
! r 121 - 1%)

In these expressions, £ and u are the modulus of elasticity and Poisson’s ratio, respectively.

of the face sheet material. The thickness of the face sheet material is represented by /. This is a

formula for flat sandwich plates, so the convexity of the shell is neglected. This means that the

estimate will be conservative, since the shell’s convexity adds additional stability.
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Assuming that the entire compressive stress is carried by the face sheets, and further

assuming 7 =7 = T, then 27R - 2T = 7Z'R2Pa, where P is the atmospheric pressure at

normal conditions. The following expression may then be obtained:

2 _ 2N tal
R =0182(1— u" )—*

For boron carbide, PLASCORE PAMG-XR1 1.0-3/8-0007-5056 honeycombs, with

hll ~ 7.85-107, the value computed for R is approximately 1.56 m. Thus, for larger radii the
shell will be stable against intracell buckling. It should also be noted that intracell buckling does not
necessarily cause the shell to fail even if the face sheets are made of boron carbide.

The design of the present invention should be reasonably scalable. If all linear dimensions
are multiplied by the same factor, the results described previously should hold. Thus, vacuum
balloons of many different sizes could be fabricated.

Improved results can also be achieved by substituting different types of honeycomb materials.
A stiffer and heavier honeycomb can actually improve the performance. A commercially-available

honeycomb structure can be obtained from Plascore having the following properties:

Nominal density 3.1 pounds per cubic foot
Bare compression strength 340 psi
Bare compression modulus 97,000 psi

Plate shear strength (L direction) 250 psi
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Plate shear strength (W direction) 155 psi

Plate shear modulus (L direction) 45,000 psi

Plate shear modulus (W direction) 20,000 psi

This material may actually be sub-optimal, but it is commercially available. A spherical
structure can be made as previously described by sandwiching this type of honeycomb between two
boron carbide ceramic face sheets. The wall thicknesses are then adjusted so that the evacuated
sphere is positively buoyant and can actually carry a 5% payload (The mass of the structure is 5%
less than the mass of the air it displaces). A safety factor exceeding 5.0 can be achieved with this
approach.

The French CODAP rules for buckling require that the safety factor be at least 3.0
(“CODAP” is a French acronym for a safety code pertaining to pressure vessels). The American
ASME-BPV code requires a safety factor of 5.0. Thus, under either code, the safety factor achieved
is sufficient.

Those skilled in the art will know that the core layer’s honeycomb structure can assume many
forms as well. A series of conjoined hexagonal cells is the most common. Other shapes are
possible, including cells forming the shape of a triangle or rectangle.

It is also possible to substitute different structures for the core layer, such as a series of
reinforcing ribs. FIG. 7 shows an embodiment of such a design, denoted as alternate layered shell
32. A series of reinforcing ribs 34 are bonded to inner layer 14. Outer layer 18 is then bonded to
the upper portions of the reinforcing ribs to form the layered shell. The ribs have a thickness of 7 and
they are spaced apart a distance a. The height of the ribs corresponds to the thickness of the

previously described core layer, which is designated as #,.
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The reader will by now recognize that the use of such interlocking cells forms a similar
structure to the previously described honeycomb cells. It uses square cells instead of hexagonal
ones. The standard linear buckling analysis of orthotropic shells performed on this alternate
structure established its viability (meaning that the shell was globally stable, the ribs were stable
under the resulting stress in the non-radial directions, and no intra-cell buckling of the inner and
outer layers occurred).

In this example, boron carbide was selected as the material for the inner layer and outer

layer ( p = 2500kg / m’; E = 460GPa (elastic modulus); 1= 0.17). The layered shell was then

optimized for varying thicknesses of the inner layer, the outer layer, and the rib geometry. The

optimized shell (R:A:a:hy:t =1:6.67-107°:3.40-107:1.89:107:348-107") was able to

withstand pressures up to 190-10° Pa (approximately 1.88 times atmospheric pressure).

These results suggest that using the rib structure is less efficient than using the honeycomb
material for the core layer. Apparently the walls of the honeycomb matrix do not (individually) meet
the requirements for stability under the resulting stress in non-radial directions. This condition does
not result in structural failure, however. The weaker honeycomb core actually turns out to be more
weight-efficient, meaning that it can produce a vacuum balloon having identical crush strength using
less material than the ribbed design. For this reason, the embodiment using the honeycomb core
layer is preferable to the square-celled embodiment.

It was mentioned previously that a cellular structure is used for the core layer. The previous
examples disclosed materials having a repeated geometric structure. While these produce a viable

construction, those skilled in the art will know that bonding the face sheets to the honeycomb matrix
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can be difficult. In addition, very small vacuum balloons (having a diameter less than 1 m) may be
unstable with respect to intracell buckling (buckling of a face sheet within one cell of the honeycomb
matrix). This is true because it is difficult to manufacture light honeycombs with small cells for the

honeycomb matrix. Thus, a small vacuum balloon must use a relatively large cell size. In order to

o=

meet the mass constraints, however, the face sheet thickness must be quite thin. This makes the face
sheet vulnerable to intracell buckling. It is therefore desirable to consider different types of cellular
materials.

Certain types of rigid porous foams can be substituted for the honeycomb matrix. FIG. 9
shows a composite structure using such a foam for the core layer. Porous foam 40 is sandwiched
between inner layer 14 and outer layer 18. It therefore forms core layer 16, as for the prior
examples. The porous foam is typically a structure made of open or closed cells. The cells are too
small to be individually visible in the view. Ceramic foams - such as boron carbide foams - have
excellent mechanical properties. They typically have open cells.

FIG. 10 shows a magnified cross section through the foam. Numerous foam pores 42 are
found throughout the structure. These are irregularly shaped voids. The structure is cellular, in that
each void can be viewed as a cell bounded by a surrounding wall (in the case of a closed cell) or
surrounding ribs (in the case of an open cell). The ribs or walls comprise a relatively small portion
of the overall volume. The manufacturing process can control the average size and distribution of

the pores.

The theoretical elastic properties for rigid foams at small deformations can be calculated as:
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2
1
E ;R E, {-—J My R —3~, where £ Py and u |, are the modulus of elasticity, the

density, and Poisson’s ratio of the foam (respectively), and £ , p, ,and g are the modulus of

elasticity, the density, and Poisson’s ratio for the material of which the foam is made (in a solid, non-
foam state).
When the boron carbide foam is combined with face sheets made of boron carbide ceramic,

a safety factor as high as 5.20 <can be obtained for

P = 89.4kg/m3,h1' ~416- 10'5,h3’ ~224-107 (even allowing for a 5% payload).

When the face sheets are made of silicon carbide ceramic

(p, =3200kg / m3,E1 =430GPa, 11, = 017), a safety factor as high as 3.06 can still be
obtained (p, ~ 65.4kg / m’,h, ~410-107, h, ~1.73-107"). Theresult forsilicon carbide

is obviously inferior, but those skilled in the art will know that silicon carbide is cheaper and easier
to manufacture than boron carbide.

The problem of intracell buckling must also be addressed when using rigid foam for the core
layer. A formula derived from the theoretical result for hexagonal cells was previously presented

for the minimum shell radius R providing stability against intracell buckling. This formula was:

2
R = 0182(1— o*) Lo T

Es (n y
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The same formula, although derived for regular hexagonal cells, can be reasonably used to
obtain estimates for the foam, where r is the circumradius of the foam pore (shown in FIG. 10). Of
course, unlike the case of the hexagonal matrix, the circumradius will not be the same for all the
foam pores. For a foam, it is appropriate to compute the largest allowable pore size in order to
prevent intracell buckling. Other pores may then be smaller, provided that the overall average pore
size does not become so small that the foam’s density becomes too high.

For a vacuum balloon having a radius of 0.1 meters using a boron carbide foam sandwiched
between two boron carbide face sheets, the largest radius of the foam pores which can be allowed
while still providing stability against intracell buckling is approximately 160 micrometers. The
average pore size should obviously be smaller in order to be significantly smaller than the core
thickness (approximately 220 micrometers) and to provide an appropriate safety factor.

Itis possible to generalize the design constraints inherent in the present invention. First, the
inner layer and outer layer should have comparable mass, and each of them should be made of a
material having a high compressive strength and a high ratio of the compressive modulus of elasticity
to the square of the density. Exemplary materials include beryllium, boron carbide, diamond-like
carbon, or high-modulus aluminum alloys containing beryllium and magnesium.

Second, the core layer should be a lightweight cellular material having the following

properties:
1. compressive strength values in the transverse (radial) direction of at least the same
order of magnitude as the atmospheric pressure; and
2. out-of-plane shear strength values of at least the same order of magnitude as the

atmospheric pressure.
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The core layer material should also have a relatively high compressive modulus of elasticity
in the transverse direction and relatively high out-of-plane shear modulus values.

Third, the thicknesses of the inner layer, core layer, and outer layer must satisfy the following

hh h,h
conditions:  The value for the expressions 2 E 7132—3 and 2F, 12223 mustbe at least of the same
order of  magnitude as the atmospheric pressure. The value for the expressions

1

£ /3 P , E 3 h
{16EC2 b } —L and | 16E, 2— | — must likewise be at least of the same order of
I—w | R 1- 4,

magnitude as the atmospheric pressure (These four expressions constitute four condition restraints).

The symbols used in the condition restraints stand for the following: (1) R is the radius of the shell;

(2) h, is the thickness of the inner layer; (3) /, is the thickness of the outer layer; (4) /4, is the
thickness of the core layer; (5) £4 is the Poisson’s ration for the inner layer material; (6) £, is the
Poisson’s ratio for the outer layer material; (7) £, is the modulus of elasticity for the inner layer

material; (8) £, is the modulus of elasticity for the outer layer material; and (9) £ is the modulus

of elasticity for the core material in the transverse direction.

Of course, once can observe from the preceding equations that they can be satisfied by simply

making /, and /4, very large. The second overarching constraint of buoyancy, however, dictates

that /2, and 4, should be made as small as possible. The buoyancy equation is:
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47['R2(hlpl +h2p2 +h3pc)<§/3ﬂR3pa

The left side of this equation is the mass of the composite spherical structure, while the right
side 1s the mass of the air the structure displaces. Obviously, the left side must be less than the right
side 1f positive buoyancy is to be achieved. The values for the thickness of the inner layer, outer
layer, and core layer must be made as small as possible while still maintaining adequate stability
against buckling. These two competing constraints (buckling stability versus the need for positive
buoyancy) define a range which is critical.

FIGs. 11, 12, and 13 illustrate the criticality of the optimization (for the example of beryllium
face sheets and aluminum honeycombs), where one seeks to balance buckling stability against the
goal of positive buoyancy. FIG. 11 is a three-dimensional plot. The shell mass to displaced air mass
ratio is plotted along the “X” axis. When this ratio is 1.0, the structure achieves neutral buoyancy.
When the ratio falls below 1.0, the structure becomes positively buoyant. The plot shows a range
of about 0.55 to 1.00. Thus, all points within the plot are positively buoyant or neutral.

The safety factor is plotted along the “Z” axis. Thus value represents the ratio of the critical
buckling pressure for the structure to the atmospheric pressure. This value must be at least 1.0 for
the structure to exist in a stable state. Obviously, higher values are needed. As mentioned
previously, the CODAP standard requires a safety factor of at least 3.0. The plot shows values

between 1.0 and 4.0.

The value for /; is plotted along the “Y” axis. The reader will recall that 2, = /A, / R.
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] !
For a fixed value of /i, , the only way to reduce the shell mass is to reduce the value for h, . The

!
only way to increase the shell mass is to increase the value for /4, . This is noted on the plot.

!

Moving to the left along the “X” axis is described as ““ /1, falling.” Moving to the right is described

!
as“h, rising.”
The bold line labeled as “SF-1.0" represents the values within the three dimensional plot
where the safety factor is exactly equal to 1.0. Any point lying above that line (meaning higher on

the “Z” axis) in the plot is therefore stable. The reader will observe that such points form a rather

limited region (Note that h; varies in a range that is very narrow compared to unity).

Furthermore, those skilled in the art will know that a vacuum balloon having a safety factor
of 1.0 1s inherently dangerous. Wind gust or impacts would cause the device to fail. A higher safety
factor is needed in order to achieve a viable design.

FIG. 12 shows the same plot with a bold line labeled as “SF-2.0.” This line represents the
values within the three dimensional plot where the safety factor is exactly equal to 2.0. Any point
lying above that line (meaning higher on the “Z” axis) in the plot therefore has a safety factor greater
than 2.0. The reader will observe that far fewer points satisfy this condition than was the case for
the safety factor of 1.0. And, a safety factor of 2.0 is generally not considered acceptable. A higher

ratio is needed, particularly for applications where external mechanical forces will be applied to the
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vacuum balloon (such as would be the case with an air ship or a simple sphere aloft in the
atmosphere).

FIG. 13 shows the same plot with a bold line placed along the points where the safety factor
equals 3.0. Any point lying higher along the “Z” axis would have a safety factor greater than 3.0.
The reader will observe that very few points on the plot satisfy this condition. As the CODAP
standard requires a safety factor of at least 3.0, this means that very few combinations can produce

a viable design.

!
FIG. 14 shows a two dimensional plotof /2, versus the safety factor. In this plot, which was
developed using finite element analysis, the thicknesses of the inner and outer face sheets were made
equal and set to the value needed for neutral buoyancy of the overall structure. The reader will note

the relative sharpness of the maximum in the plot. The key to the optimization is realizing the

7 f
criticality of the ratio /2, . It is not obvious that the relative thickness of the core ( h, ) is the result-

effective parameter rather than the absolute core thickness ( /2, ) and radius of the shell ( R ) taken

separately. In other words, it is not obvious that the design is scalable with respect to both stress and
buckling (if it is stable against intracell buckling). Multiplication of all linear dimensions by the
same factor gives an equally viable design. Such scalability does not hold for prior art helium-filled

balloons or for prior art composite structures. The reader should note that the buoyancy equation

! !/ !
provides a strict relationship between /4, and /4, . Thus, the value for /2, could be optimized as

well.
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The reader should also note that the graphical depictions shown in FIGS. 11-13 are slightly
simplified. In actuality the three dimensional surface produced in the plot would have more
undulations and complexity. However, these figures serve to illustrate the concepts of the

optimization and are generally accurate.

!
The critical range for 4, can be expressed using sets of equations. The critical buckling

equation is:

h, - h,

Moy +hy)
2 ~ R?

P =2-E- 2. E-

Using a CODAP safety factor of 3.0, this equation can be rewritten as the following
constraint:
2Eh h, =3P,

!
Simple algebraic manipulation then produces an expression for /,

h; > 3L (Equation 3)

!

2Eh,

Similarly, an upper bound can be determined using the buoyancy equation. The reader will

recall that the buoyancy equation is stated as follows:
4/3-7- R - p, 2 47R* (hp, + hyp, + hyp,)

Algebraic manipulation and cancellation of terms allows this equation to be rewritten as:
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7
A £

14 2 ’ 1 .
hop+h p+h p < 3 p, » which when solved for /1, reads:

P _hp mp > h; (Equation 4)
P

!

The inner and outer layers are assumed to be reliably bonded to the core layer. All three
layers must be precisely manufactured so that manufacturing imperfections do not invalidate the
buckling stress analysis discussed previously.

Examples of these condition restraints may be useful. Standard atmospheric pressure at sea
level is 101,325 Pa. Assuming a vacuum balloon with a radius of 1m and face sheets made of

beryllium and an aluminum honeycomb core, the preceding expressions can be solved to produce

the values 4, = 4, R~277-10"m and h = hI,Rz 1.04-10*m . Beryllium has a modulus of

Iy

72 then solves as

elasticity of 303 GPa. The expression 2FE,

2-303-10°N -m™* - 1.04-10*m-2.77-107m

2

~175,000Pa . Thereader will note that the units ofthe

1*m
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expression are “pressure” units (Newtons per square meter, or Pascals). These are the same units
as for atmospheric pressure. Thus, the reader will understand that the magnitude of this expression
can be compared to the magnitude of the atmospheric pressure to see if the value for the expression
is at least of the same order of magnitude as the atmospheric pressure. In the example given, the
expression produces a result which is of the same order of magnitude as the atmospheric pressure
(175,000 Pa compared to 101,325 Pa). Thus, that particular constraint is satisfied.

The units for the four constraint expressions are all pressure units. The values can all be

compared to the magnitude of the atmospheric pressure in order to determine whether the constraints

hh,
R2

are satisfied. Another way of stating the constraint is that the value for 2, must be greater

than or equal to one-tenth of the atmospheric pressure.
The reader may wish to see examples of solutions using the constraint equations. For this

example, the inner and outer face sheets have the same thickness and are made of the same material

(E, =E,,h = h,,etc). Itis useful to define variables & and /3 in order to group some terms.

These are defined in the following:

P P
h h, >—“ =« (Equation 5
1 2El (Equation 5)

h, > i = [ (Equation 6)

s
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4 !

2h, p+hy p, < % 0, (Equation 7)

14 !
The two variables defined ( ¢z, ) do not depend on /2, or /z; . One can next introduce

definitions for the relative densities, as follows:

pl :ﬁ-)pc :&
Pa Pa

Substituting these expressions into Equation 7 gives:

6hl’,01, + 3h3,pc =1 (Equation 8)

. a " . : . .
If one then substitutes —- for /4, in Equation 8, one obtains the following quadratic

h

equation:

6‘,01,(}21’)2 — hll +3,06,05 = (Equation 9)

This equation has the well-known solution for a quadratic:

li\/1—72,01 p.
12,
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1+\/1—72,01 p. o
12p,

!/ 4 !
Solutions only exist when 72, p, o <1 and f < ,and A, lies

in an appropriate range. That range is defined is defined as follows:

ma

1-1-72p, p, 1 1-720 p,
X \/ ’plpca/’ﬂ <h1 < ,plloca
12p, 12p

(Equation 10)

Equation 10 can be used to solve for the ranges where beryllium face sheets are bonded to

a PLASCORE PAMG-XR1 1.0-3/8-0007-5056 aluminum honeycomb core. This gives:

a~17-107, ~ 26107, p ~1430,p, ~124,72p, p. @ ~021 <1,

1-1-720p, 11=720,p,
: PP 66107, < M B
12p, 12p,

~11-10™*, which

p>

defines a rather narrow range for /1, . Specifically, 2.6-107° < &, <11:107*. Equation 5 can

4 14
then be used to solve for /4, , whichsolvesas 1.5 - 107 < h, <21-1 0% . Ofcourse, one should

choose values lying within these ranges that will give the highest possible safety factors.
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The vacuum balloon, having arigid structure, has numerous advantages over prior art flexible
helium or hydrogen containing balloons. As an example, the buoyancy of the vacuum balloon can
be regulated without the need to carry ballast. To decrease lift, a valve in the shell can be opened
to bleed some air into the evacuated interior. To increase lift, a vacuum pump can be carried to
evacuate air from within the interior, possibly through the same valve. This is not to say that
conventional ballasting techniques, such as carrying water tanks or ballonets, cannot be used with
some advantage in the present invention. Those skilled in the art will realize, however, that a
vacuum balloon is not so dependent on separate ballasting devices.

Many applications for the vacuum balloon technology are possible. FIG. 5 shows one such
application - air ship 26. Air ship 26 uses five layered vacuum balloons 20. The size of the balloons
is adjusted to fit within fuselage 22. A payload compartment 24 is included to house the useful load.
An air ship could also be constructed using clusters of much smaller layered vacuum balloons. Such
a design could reduce the risk of catastrophic failure, since any structural flaw would only be likely
to compromise a small portion of the available lift.

Vacuum balloons constructed according to the present invention can be used in most other
applications currently being served by conventional balloons. Examples include toys, lifting devices
for advertising banners, lifting devices for broadcasting equipment, and lifting devices for
surveillance equipment.

Vacuum balloons do typically have a higher structural weight than conventional inflatable
balloons, which may limit the range of altitudes in which a vacuum balloon can operate. This

limitation can be overcome to a large degree, however, using a variety of techniques.
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To be able to achieve higher altitude, a vacuum balloon may be partially filled with air at low
altitude. This would reduce the differential pressure (external versus internal) that the balloon would
need to withstand. In the course of ascent, this air should be pumped out. An example serves to

demonstrate the advantage of this approach: Assume a shell with boron carbide face sheets

! !

(hy, ~753:107%,h ~251-107, the average density is 0.412kg-m>). The buckling

analysis gives the eigenvalue A4, = 0.83. The air density and pressure at the altitude of 10km

are 0.412kg - m™ and 2.64-10" Pa , respectively (1976 standard atmosphere). Thus, the shell

will float and withstand this reduced pressure with a safety factor of 3.18. However, the safety factor
depends on the altitude, and it is the minimum value that matters. At normal conditions the shell
should be partially filled with air so that it has near-zero buoyancy, and the safety factor is about 2.59
(the minimum value). Thus, the shell may ascend from 0 to 10km without failure if the air is
pumped out so that near-zero buoyancy is maintained. In the emergency case of an accidental
descent to lower altitude (such as might result from descending air currents), the pressure inside the
balloon could be appropriately increased by quickly bleeding some air in.

On the other hand, a vacuum balloon optimized for high altitudes does not necessarily have
to satisfy the requirements of sufficient structural strength and positive buoyancy at all intermediate
altitudes. Such balloons may be elevated to the operational altitude using some auxiliary means
(with stabilizing internal pressurization being present until it is no longer needed). For example, it
is possible to ensure structural strength and positive buoyancy at intermediate altitudes by partially

filling the balloons with air and heating the air. In contrast to conventional hot-air balloons, heating
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would only be required during ascent and descent. No heating would be required at the operational
altitude.

A high-altitude vacuum balloon could also be elevated using sturdier, low-altitude vacuum
balloons, helium balloons, or other means. Again, structural strength at intermediate altitudes may
be ensured by partially filling the balloon with air. It should be noted that in this case it may be
necessary to partially fill the honeycombs with air as well, so honeycombs with perforated cell walls
may be needed to enable rapid pressure equilibrium among all the honeycomb cells. FIG. 8 shows
one such embodiment, in which the honeycomb walls include a series of vents 38 connecting the
honeycomb cells. All these cells can then be connected to a regulation valve which regulates the
pressure within the core layer.

An example of a vacuum balloon optimized for high altitudes may be helpful. A shell having

beryllium face sheets could be constructed with the following properties: h3’ ~1.058-107,

h,’ ~ 6.790-10°%, average density of 0.126kg - m™>. The buckling analysis for this structure produces

the minimum eigenvalue A

min

=0.095. For an altitude of 18km, the air density and pressure are

0.126kg - m™> and 7.51-10° Pa , respectively (based on the 1976 standard atmosphere). In these

conditions, the shell will float and withstand the reduced atmospheric pressure with a safety factor
of 1.28.

This safety factor is admittedly not very high, but the structure can be further optimized to
improve the margin. Thus, this analysis demonstrates that vacuum balloons may operate at a

maximum altitude of at least 18 km. This altitude is attractive for surveillance applications, as wind
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speeds are relatively low, there is no commercial air traffic, and the balloons may be less vulnerable
to attack. The vulnerability may be further reduced by using several vacuum balloons clustered
together.

Engineering challenges are present regarding the manufacturing of the vacuum balloons. One
approach would be to manufacture a balloon as two halves. The two halves would then be mated
and the interior evacuated to the desired level of vacuum. FIG. 6 shows one such design. Two
balloon halves 28 mate together along mating flange 30. A sealing gasket or gaskets is provided.
The two halves can be bolted or otherwise joined together to form a completed vacuum balloon.

This approach also allows much more efficient storage, since a stack of nested balloon halves
would not create much dead volume. Such an approach cures one problem inherent with helium-
filled lifting devices: helium-filled airships occupy a very large volume and must consequently be
stored in large hangars. Alternative solutions for helium airships (such as venting helium to the
atmosphere or pressurizing helium and pumping it into high-pressure cylinders) are expensive.

Disassembling the balloon and storing the balloon halves is much simpler. A bleed valve
is opened which allows the balloon to fill with air up to atmospheric pressure. The balloon can then
be disassembled into two halves and the latter can be stacked for storage. When the balloon is again
needed, it is reassembled from the two halves and a vacuum pump is used to evacuate most of the
air contained in the internal volume. The same approach could be used for spherical balloons
divided into three, four, or more sections.

Other manufacturing methods are possible. For a shell having a small radius, inner and outer
layers would be quite thin. These layers could be formed using deposition methods (which would

include vapor deposition and many other techniques). For larger radius shells, gelcasting techniques



36

can be employed. In particular, within this technology and using, e.g., foaming agents, thin
spherical layers may be blown similar to glass ones.

And, the reader should bear in mind that a relatively conventional material was used for the
analysis of the honeycomb core embodiment (5056 aluminum alloy). A shell with a honeycomb
made of more exotic materials - such as a high modulus aluminum-beryllium-magnesium alloy -
should withstand even higher pressure.

As described previously, the structure disclosed using the more efficient embodiments will
not lose a significant part of the useful lifting force even using “rough” vacuum (around 0.01
atmospheres; somewhat less for higher altitudes), which can be achieved with simple vacuum pumps
at low cost.

Traditional gas balloons suffer from greatly variable buoyancy depending on the atmospheric
conditions. The gas contained expands and contracts under changing atmospheric conditions (such
as bright sunlight or rain). The structure disclosed by the present invention could also be used to
contain helium at a pressure close to atmospheric pressure. A much weaker wall section can be used,
since it would not be required to resist the crushing force of atmospheric pressure. The structure
would only need to be strong enough to maintain the same balloon size despite increasing and
decreasing internal pressure. Thus, the structure disclosed is useful for applications other than
operations at near-vacuum.

The preceding description contains significant detail regarding the novel aspects of the
present invention. It should not be construed, however, as limiting the scope of the invention but
rather as providing illustrations of the preferred embodiments of the invention. As an example, the

Grid-Lock technology disclosed in U.S. Patent No. 5,273,806 could be substituted for the
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conventional honeycomb cells in the core layer. Many other such substitutions are possible. Thus,

the scope of the invention should be fixed by the following claims rather than the examples given.
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CLAIMS
Having described our invention, we claim:

1. A structure for creating buoyancy within an atmosphere having an atmospheric pressure and

an air density o, , comprising:

a. a sealed spherical shell, with an enclosed volume contained therein;
b. wherein said spherical shell includes,
1. an inner layer proximate said enclosed volume,
11. an outer layer distal to said enclosed volume,
iii. a core layer between said inner layer and said outer layer;
C. wherein said inner layer, said outer layer, and said core layer are all bonded together;
d. wherein said inner layer and said outer layer have approximately the same mass;
e. wherein said core layer is substantially thicker than said inner layer and said outer
layer;
f. wherein said core layer includes a plurality of adjoining cells;

g. said spherical shell has a radius R;

!
h. said inner layer has a thickness /4, , a thickness to shell radius ratio 4, =5, / R,

a modulus of elasticity [, a Poisson’s ratio £, and a density Prs
14

1. said outer layer has a thickness /, , a thickness to shell radius ratio 4, = h, / R,

a modulus of elasticity F,, a Poisson’s ratio 44, , and a density p, ;
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14
said core layer has a thickness /4, a thickness to shell radius ratio /1, = h; / R,

a modulus of elasticity in the transverse direction £, and a density p, ;

wherein materials are selected for said inner layer, said outer layer, and said core

’ i I

layer, and values for said h1 , hz‘ , and h34 are selected such that they lie within

a range wherein,

il

iii.

1v.

2Elhllh3l is at least the same order of magnitude as said atmospheric

pressure,

2Eh b, 18 at least the same order of magnitude as said atmospheric

pressure,

3y
{161262 " £ 2} h, is at least the same order of magnitude as said
— M

atmospheric pressure,

1

3
{161562 l—Ei—z} h, 1s at least the same order of magnitude as said
—H

atmospheric pressure; and

14

h p, + hz’p2 + h;pﬁ) is less than 14 o,
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A structure as recited in claim 1, wherein:

a. said inner layer is made of a material selected from the group consisting of
beryllium, boron carbide ceramic, and diamond-like carbon; and

b. said outer layer is made of a material selected from the group consisting of beryllium,

boron carbide ceramic, and diamond-like carbon.

A structure as recited in claim 2, wherein said adjoining cells in said core layer are made of

aluminum.

A structure as recited in claim 1, wherein said adjoining cells are hexagonal.

A structure as recited in claim 1, wherein said adjoining cells have four sides.

a structure as recited in claim 1, wherein:

a. said sealed spherical shell is divided into two separate hemispheres; and

b. each of said two separate hemispheres includes attachment features so that said two

separate hemispheres can be fastened together to form said sealed spherical shell.

A structure as recited in claim 1, further comprising a valve in said sealed spherical shell for

adjusting said pressure of gas contained within said enclosed volume.
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11.

12.

13.
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A structure as recited in claim 1, wherein said inner and outer layer are made from materials
having high values of compressive strength and high ratios of the compressive modulus to

the square of the density.

A structure as recited in claim 1, wherein said core layer is made from a material having a
high compressive modulus of elasticity in the transverse direction and a high out-of-plane

shear modulus.

A structure as recited in claim 1, wherein said sealed spherical shell is divided into at least

two subsections which can be fastened together to form said sealed spherical shell.

A structure as recited in claim 7, further comprising a vacuum pump connected to said valve,
capable of pulling said gas within said enclosed volume out of said structure and ejecting said

gas to said atmosphere.

A structure as recited in claim 1, wherein said core layer includes a plurality of vents

connecting said plurality of adjoining cells.

A structure as recited in claim 1, wherein the radius of said shell is large enough to prevent

intracell buckling.
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15.

16.

17.

18.

19.

20.

!
A structure as recited in claim 1, wherein 7, lies within a range such that:

.EEL_&L'O_].__@LZ%' Z 3Pmm

A structure as recited in claim 14, wherein:

a. said inner layer is made of a material selected from the group consisting of
beryllium, boron carbide ceramic, and diamond-like carbon; and

b. said outer layer is made of a material selected from the group consisting of beryllium,

boron carbide ceramic, and diamond-like carbon.

A structure as recited in claim 15, wherein said adjoining cells in said core layer are made

of aluminum.

A structure as recited in claim 14, wherein said adjoining cells are hexagonal.

A structure as recited in claim 14, wherein said adjoining cells have four sides.

A structure as recited in claim 1, wherein said adjoining cells are formed using a porous

foam.

A structure as recited in claim 14, wherein said adjoining cells are formed using a porous

foam.
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22.

23.

24.
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A structure as recited in claim 19, wherein said porous foam is an open-celled foam.
A structure as recited in claim 19, wherein said porous foam is a closed-cell foam.
A structure as recited in claim 20, wherein said porous foam is an open-celled foam.

A structure as recited in claim 20, wherein said porous foam is a closed-cell foam.
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ABSTRACT

A new type of vacuum balloon. A layered wall structure is used, including a relatively thick
honeycombed section sandwiched between and bonded to two relatively thin layers. This layered
wall design is used to form a thin-walled sphere having greatly enhanced resistance to buckling.
Using this approach it is possible, with existing materials, to create a rigid vacuum balloon having

positive buoyancy.
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